PORTFOLIO

Project presentations on the website

Every project supported by Gebert Rüf Stiftung is made accessible with a web presentation that informs about the core data of the project. With this public presentation, the foundation publishes the funding results achieved and contributes to the communication of science to society.

Close

Upcycling reclaimed glass fibers

Editorial

The project management is responsible for the content of the information provided.

Project data

  • Project no: GRS-025/22 
  • Amount of funding: CHF 150'000 
  • Approved: 28.06.2022 
  • Duration: 09.2022 - 01.2024 
  • Area of activity:  InnoBooster, seit 2018

Project management

Project description

Glass Fibre Reinforced Plastic (GFRP) is an incredibly versatile material, commonly found in boats, planes, trains, and wind turbine blades. In 2021, 9 million tons of new GFRP were produced while 4.5 million tons of GFRP waste was disposed of 98% of GFRP waste ends up in landfill, with the majority of the rest either being incinerated or worse, abandoned in the environment. Decades of attempts to recycle GFRP have been unsuccessful, proving to be economically unfeasible. This was because the plastic and the glass fibers are very difficult to separate and all standard recycling technologies required the feedstock to be ground up, destroying the resale value of the glass fibers. We have used standard pyrolysis technology which heats up the GFRP in a static oxygen free environment. This removes the plastic from the fibers leaving the fibers only slightly damaged during this process. A protocol is fully developed to produce and test a fiberglass mat from reclaimed fibers. This includes the development of a dispersion method, surface treatment, sizing application, and adhesion promotor, as well as preliminary protocol for mat production, up to composite testing.

Status/Results

Within the InnoBooster scope, we are working to industrialize a post treatment process which was developed at lab scale at EPFL. This includes process development taking into consideration both cost and the LCA, minimizing environmental impact. The Innobooster funding funded the research and development of the glass fiber post processing to bring the lab scale demonstration to demonstrate the feasibility of the industrial scale.

Links

Persons involved in the project

Dr. Mitchell Anderson, Project Leader
Dr. Nour Halawani, Research Staff
Prof. Veronique Michaud, Head of LPAC-EPFL

Last update to this project presentation  10.04.2024