PORTFOLIO

Project presentations on the website

Every project supported by Gebert Rüf Stiftung is made accessible with a web presentation that informs about the core data of the project. With this public presentation, the foundation publishes the funding results achieved and contributes to the communication of science to society.

Close

PhagoVax – Combining Vaccination with Phage Therapy

Editorial

The project management is responsible for the content of the information provided.

Project data

  • Project no: GRS-093/20 
  • Amount of funding: CHF 244'000 
  • Approved: 29.10.2020 
  • Duration: 07.2021 - 12.2023 
  • Area of activity:  Microbials, seit 2016

Project management

Project description

The inevitable evolution of resistance threatens the efficacy of antibiotics to fight pathogenic bacteria. However, alternatives to antibiotics remain scarce. We believe it is crucial to develop safe and affordable multi-pronged strategies that are robust to evolutionary changes in pathogenic bacteria. PhagoVax is the first attempt to combine vaccines with phage therapy in order to prevent or to cure infections by pathogenic bacteria.
The PhagoVax concept emerged from our recent discovery that vaccines can force a pathogen to lose its protection against phages (viruses that kill bacteria). Therefore, there should be no way for the targeted bacteria to escape eradication in vaccinated hosts treated with the right bacteriophage cocktail.
Our initial goal was to provide a sound proof of principle for this strategy in the mouse model by targeting Salmonella Typhimurium.

Status/Results

We were able to demonstrate the feasibility of a fundamentally new approach to fight pathogenic bacteria: carefully assembled bacteriophage cocktails can be used in combination with vaccination to improve the clearance of pathogenic bacteria from the intestinal tract of infected hosts. We found that this can also limit the transmission of pathogens, thereby diminishing the need for antibiotics. The obtained data are sufficient for patenting the Phagovax invention before publication and further developments of this approach in precliniacal models.
We obtained an additional two years funding to characterize the phage-bacterium co-evolution in the intestinal tract on mammals. This will be instrumental to refine the Phagovax approach against multi-resistant strains of pathogenic Escherichia coli, the leading cause of death attributable to antibiotic resistance.

Links

Persons involved in the project

Prof. Médéric Diard, University Basel, Biozentrum; project leader
Dr. Nicolas Wenner, project employee

External project partners:
Prof. Luisa De Sordi, Sorbonne Université
Dr. Marianne De Paepe, INRAe

Last update to this project presentation  22.01.2024