PORTFOLIO

Projektdarstellungen auf der Webseite

Jedes von der Gebert Rüf Stiftung geförderte Projekt wird mit einer Webdarstellung zugänglich gemacht, die über die Kerndaten des Projektes informiert. Mit dieser öffentlichen Darstellung publiziert die Stiftung die erzielten Förderresultate und leistet einen Beitrag zur Kommunikation von Wissenschaft in die Gesellschaft.

Close

Microcaps

Redaktion

The project management is responsible for the content of the information provided.

Kooperation

This project, funded by Gebert Rüf Stiftung, is supported by the following project partners: ETH Zürich

Projektdaten

  • Projekt-Nr: GRS-035/18 
  • Förderbeitrag: CHF 350'000.00 
  • Bewilligung: 29.10.2018 
  • Dauer: 04.2019 - 03.2021 
  • Handlungsfeld:  Pilotprojekte, 1998 - 2018

Projektleitung

Projektbeschreibung

Pharmaceutical companies invest large amounts of money in the development of new drug treatments with improved efficiency, faster recovery time and less side effects. Surprisingly, the way we take up most drugs has remained almost the same during the last century: we are still flushing our entire body with the drug, eventually affecting the healthy parts as well. This causes several side effects like sleepiness, loss of hair or severe organ damage. Therefore, novel pharmaceutical concepts, like targeted drug delivery, have started to attract interest. In this approach, the medication pills contain tiny microcapsules filled with the drug. The microencapsulated drug can then be directly guided, delivered and released specifically at the source of the disease. Most contemporary medical treatments are already based on such microcapsules which drastically reduce the side effects for the patient. However, a major challenge of this concept is the production of such microcapsules in large quantities. Not only is the current production speed too low, but today’s fabrication processes are also insufficient as they neither provide control over the capsule size, nor a uniform size distribution. Both of these factors are crucial for precise drug dosing and controlled release properties. Hence, a scalable and controlled microencapsulation process is essential to reach the demand for future medical treatments and further improve the efficiency of the treatment. During our project Microcaps, we have developed a technology to fabricate size- controlled microcapsules at industrial volumes, named emulsification optimized system “EOS”. The first prototypes have an increased productivity of a factor of 1000 compared to state-of-the-art processes. Next to the pharmaceutical market, precise microcapsules will bring benefits to various other markets. In cosmetics, for example, microencapsulation of active ingredients allows them to be taken-up more efficiently and improve the shelf-life of such products due to the added controlled release through the capsules. Overall, controlled microencapsulation has the potential to improve various goods of our daily life with benefits for our health, well-being, and the environment.

Was ist das Besondere an diesem Projekt?

Microcapsules and microparticles are industrially used to protect active materials from its environment in pharmaceutical, cosmetic, agrochemical, nutraceutical, and probiotic products. Examples for protected micromaterials are drugs in pharmaceutics, anti-ageing substances in skin creams and aromas in food. Up to now, microcapsules and microparticles are fabricated through methods such as mixing, shaking, and ultra-sonication. While all of these procedures allow for a rapid production of large amounts of micromaterials, the final particle size is uncontrollable and exhibits a broad size distribution. On the contrary, micromaterials with controlled size and narrow size distribution, so called monodispersity, allow for precise doses, increased particle stability, and controlled release profiles. These benefits rely on the fact that all micromaterials have the exact same properties due to their equal size. Up to now, however, monodisperse micromaterials can only be produced at laboratory scales with microfluidic methods. Today’s microfluidic state-of-the-art devices are insufficient, non-scalable, and irreproducible, which makes industrial applications impossible. Microcaps tackles these hurdles by introducing a novel, highly scalable, and robustly operating EOS device. We envision bringing control to the world of microencapsulation at industrial volumes. The EOS of Microcaps enables a level of control over dosages and release profiles that is currently unmet by existing microencapsulated applications.

Stand/Resultate

Microcaps is showing steady progress and ist on track. In March 2019 the company Microcaps AG was founded and is an official ETH spin-off. Microcaps is working with several clients across the pharmaceutical, nutraceutical, and cosmetics field. The interdisciplinary team currently consists of 12 people and covers fields of chemical and mechanical engineering, food science, chemistry, and materials science. Microcaps was awarded with the ZKB Pionierpreis 2020, is a W.A. de Vigier winner 2020, and was recognized in Forbes 30 under 30 in the DACH region.
As of 2021, Microcaps will have its headquarters in Schlieren in the Biotechnopark. In mid 2021, Microcaps will launch its EOS system.
Among others, our internal R&D focusses on pharmaceutical drug delivery systems and enteric probiotics delivery in food-grade, biodegradable microcapsules.

Publikationen

High-Throughput Step Emulsification for the Production of Functional Materials Using a Glass Microfluidic Device; A. Ofner, D.G. Moore, P.A. Rühs, P. Schwendimann, M. Eggersdorfer, E. Amstad, D.A. Weitz & A.R. Studart; 2017, Macromolecular Chemistry and Physics, 218(2),1600472 30, 2018):
Wetting controls of droplet formation in step emulsification; M. Eggersdorfer, H.J. Seybold, A. Ofner, D.A. Weitz & A.R. Studart, 2018, PNAS
Controlled Massive Encapsulation via Tandem Step Emulsification in Glass A. Ofner, I. Mattich, M. Hagander, A. Dutto, H.J. Seybold, P.A. Rühs & A.R. Studart, Adv. Funct. Mat. (2019)

Medienecho

Links

Am Projekt beteiligte Personen

Letzte Aktualisierung dieser Projektdarstellung  05.07.2024